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Visibility Probabilities On Line Segments
In Three Dimensional Spaces Subject
To Random Poisson Fields Of Obscuring Spheres.*

by
M. Yadin and S. Zacks

Technion, Israel Institute of Technology
and State University of New York at Binghamton
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Abstract

The methodology of determining simultaneous visibility probabilitites and points on line

X segments is extended to problems of three dimensional spaces, with Poisson random fields
of obscuring spheres. Required functions are derived analytically and a numerical example

; is given for a special case of a standard Poisson field, with uniform distribution of sphere
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1. Introduction

Consider a source of light located at a point O and an arbitrary straight line segment,
C, in a three dimensional Euclidean space, R®. A layer of random spheres is located
between O and C. The centers of the spheres are randomly dispersed between two parallel
planes, according to a Poisson process with a specified intensity. Furthermore, the radii
of the spheres are independent identically distributed random variables, having a specified
distribution, such that both O, and the line segment, C, are not covered by the random
spheres. A point P on C is called visible (in the light), if the line segment g—f does not
intersect any random sphere. The measure of visibility on C is the total portion of C
which is visible. We are interested in the distribution of this random variable.

In a previous study (2, 3, 4] we developed the methodology for determining the mo-
ments of the measure of visibility on star-shaped curves in the plane and provided also
an approximation to its distribution. The objective of the present paper is to apply the
two-dimensional methodology for solving the three dimensional problem mentioned above.
The results of the present study are thus restricted to the case where the target curve
C, in the three dimensional space, is a straight line rather than an arbitrary curve. A
runway in an airfield as C, and the pilot’s position in a flying airplane as O, is a relevant
example. In the case under consideration, one can consider the shadowing process on the
plane containing C and O. In a previous Technical Report [5] we presented the basic
ideas, but evaluated certain key functions by two dimensional numerical integration. This
type of numerical solution is time consuming and contributing to numerical error. In the
present paper we provide an analytical solution to the problem of determining simultane-
ous visibility probabilities of arbitrary points on C. With this anaytical solution one can
compute moments of random visibility measures on C very fast and accurately. Moreover,

discrete approximations to the distributions of lengths of shadows on C (see Yadin and

Zacks [6]) can now be computed efficiently.
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Fig. 1. The Geometry of the Three Dimensional Model.
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In Section 2 we present the three dimensional shadowing model, and the basic geometry.
In Section 3 we discuss the reduction to a two-dimensional shadowing process. In Section
4 we present the formulae for computing simultaneous visibility probabilities on a segment
of C. Analytical development of some of the functions specified in Section 4 is given in
the Appendix. In Section 5 we provide an explicit solution for a special case, in which the
diameters of shadowing spheres, in the Poisson field of obscuring elements, are independent
and having an identical uniform distribution on [0,%].

The results of the present study can be applied to a large class of military and civil

problems of visibility in a three dimensional scenario, with randomly scattered obscuring

elements.

2. The Three Dimensional Shadowing Model.

Consider a source of light located at a point O (the origin), and an arbitrary straight line,
C, in a three-dimensional Euclidean space. A layer of random spheres is located between
two planes U*, W*, which are parallel to the line C. Let C* be a plane containing C,
parallel to U* (see Figure 1). The random spheres, whose centers are located between U*
and W* cast shadows on C. As stated in the Introduction, the objective is to develop
formulae for the computation of the probabilities of simultaneous visibility of any n points
on C (n > 1). These probabilities are then applied to determine the moments of total
visibility measures on C, and to approximate its distribution. In the present section we
discuss the basic stochastic and geometric structure of the field.

Let u*, w* and r* be the distances of U*, W* and C* from O, respectively. It is

assumed that
(2.1) O<b<u'<w'<r* -,

where b is the maximal radius of a sphere. Let M be a plane passing through O and C.

Let U and W be straight lines at which M interesects U* and W*. The three parallel

......



lines, U, W and C are at distances u, w and r from Q. The following relationship is

satisfied:

(2.2) —=—= rT = cos(¢),

where ¢ is the angle between the axes Z* and Z, which pass through O and are per-
pendicular to C* and C, respectively. The spheres which are scattered between U* and
W* have random locations and random radii. It is assumed that the centers of spheré
follow a random Poisson field of intensity A, and that the radii of disks are independent
random variables X, X3,... having a commong c.d.f. F(z), concentrated on [0,b]. More
specifically, let (c1,c¢2,c3,z) be the three location coordinates of the center of a sphere
and its radius. Let § be the sample space of randomly scattered spheres, and let 8 de-
note the Borel o-field of subsets of S. For B € 8, let N{B} be the number of random
spheres having coordinates in B. It is assumed that for each m > 2, and every parti-
tion {By,...,Bn} of §, N{B;},...,N{Bp,} are independent random variables, having

Poisson distributions with means
(2.3) A(B.-)=A/---/dF(z)dc1...dc3, t=1,...,m.
B;

The random spheres in the Poisson field cast shadows on C*, and in particular on the
line C. In order to study the shadowing process on C we consider in the next section the

projection of the Poisson field on the plane M.

3. The Two-Dimensional Shadowing Model on M.

In the present section we consider the reduction of the shadowing model to M. In
particular, we have to determine the distribution of the centers of shadowing disks on M
and the conditional distribution of their radii given the location of their centers. In Figure
2 we present the geometry of the reduction to a two-dimensional model by the projection of

the three-dimensional space on a plane perpendicular to C. We restrict attention to spheres
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which are centered within a prism, P, whose projection is the parallelogram ABCD (see

Figure 2). The distances from M of spheres centered outside this prism is greater than b.
Accordingly, such spheres do not intersect M and cannot cast shadows on C. A sphere
centered within the prism P intersects M if its radius, z, is greater than its distance d
from M. The intersection of such a sphere with M is a disk of radius y = (z? - d?) _1{_/ 2
where a, = max(a,0). For simplicity, we will assume that all the spheres centered within
the prism P generate on M disks; those spheres with z < d generate on M a disk with
radius y = 0. The center of a disk generated by a sphere is the orthogonal projection of its
center on M. Such projections may lie between two parallel lines on M , having distances

¢ —f3 and w + 8 from O, where
(3.1) . B =b tan ¢.

The orthogonal projection of centers of random spheres generate on M a two-dimensional
Poisson process. The intensity of this process at any given point is proportional to the
length of the segments within the prism P on the normal to M through the point. As
seen in Figure 2, this intensity decreases to zero towards the edges. In the special case of
B = 0 the Poisson process on M is homogeneous with intensity n = 2)b. Generally, the
intensity of the Poisson process on M, at all points on a line parallel to U at distance z

from O is

(3.2) n(z) = /\%[min(z + B,w) — max(z — 8, u)).

Notice that if u + 8 < z < w — 8 then n(z) = 2Xb. That is, the Poisson field on M is

homogeneous only between the parallel lines of distance u + B and w— B from O.
Consider a sphere centered in the prism P, on a plane V* , whose distance from M is

a. This sphere generates on M a disk whose center falls on a line of distance z from (0]

(see Figure 2). Moreover,

(3.3) |z — v| = af/b.
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Accordingly, if z is the radius of the sphere, the radius of the disk is

(3.4) y=((=" - (2 - v)?6*/5%)4) /2.

Let G(y | z,v) denote the conditional CDF of the random radius Y, of a disk on M,
given that its center is on a line of distance z from O, and the center of the generating

disk is on a plane intersecting M at distance v from Q. According to (3.4),

(0, y<o0
(3.5) G(y| zv) = ﬁ F((v? + (z— v)2b2/B%)Y/2), 0<y<b(l- z;v)z)l/z
|1 b(1- 222)) 2 <y,

It is interesting to notice that G(C | z,v) = F(%|z - vl).

In the following section we show how the simultaneous visibility probability p(sj,...,8s)
can be computed from G(y | z,v), and the uniform scattering in the three dimensional
prism P. For the direct computations we partition the layer between the two parallel
planes U* and W* to parallel layers of width A* (A* — 0). Consider a layer between the
parallel planes V* and V**, within the original layer, of distances v* and v* + A* from
O; u*" <v*<v'+A* <w*. Let v+ Av be the distance from O at which v** intersects

M. We have

v‘ v‘+A‘ r‘
3.8 Z T2 )
( ) v v+ Av r cos ¢

Every point in M, which lies on a line parallel to V, whose distance from O is between

v— B+ Av to v+ 3 has the same intensity u(z)Av, where
(3.9) u(z) = Ab/p,

as can be readily verified from Figure 2. Since Av — 0, we can consider the Poisson fields

on these thin layers to be almost homogencous.
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4. Simultaneous Visibility of Points on C.

Consider n points on C, between Py and P,n. Let sy <... < s, be the coordinates of
these points, with respect to the orthogonal projection of O on C. In the present section
we derive a formulae for the simultaneous visibility probability, p(s1,...,85), of these n
points.

We say that a specified set of n points on C are simultaneously visible, if the random
disks on M do not intersect any one of the n rays from O to P,, (t+=1,...,n).

We introduce the points Pg: and Pgn, with 6’ < s’ and 6" > s so that, disks centered
on the left of the ray from O to Py, or on the right of the ray from O to Py, will not

cast shadow on the interval € = [Py, Pyn]. The coordinates of Py and Pgn are:

(4.1) 0' =5 —b((s")2 +r})?/(u - B),
and
(4.2) 6" = ¢ + b((s")z + r2)1/2/(u _ /3)

Let C be the set of points in M such that, random disks which are centered at C can
cast shadows on the interval . C is a trapezoid bounded by the lines parallel to C, at
distances u — § and w + § from O, and by the line segments @0, and ?Ee" .

Let x{C} denote the expected numbers of disks having centers in C. We consider also

disks of radius y = 0. According to (3.9)

VI
u{C}zg- . /dv/ zdz
(4.3) v elp
Ab
= 7(0" —8")(w? - u?).

For values of s in (6',0") and 0 <t < §”—6'—s, we denote by AK (s,t) [resp. AK_(s,1)]

the expected number of disks centered between the line segments Qf‘ and le)g“ [resp.

@ht ], which do not intersect @?a .
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Consider a disk centered on a line V, parallel to U, which intersects the axis Z at

distance z from O, v — 8 < z < w + f, and having a distance z from the intersection
of V from ?I:’—‘ (see Figure 3). The maximal radius that such a disk can have, without

intersecting Q{" , 18

(4.4) y(z) = zr/(s* + )2 0<z< -;t.

Hence, the function K (s,t) is given by,

w vpg  ztfr

(4.5) K+(s,t)=—g-/dv / dz/C;’((s—zq_%)lﬁlv,z) dz.

-B
Geometrical considerations yield that K, (s,t) = K_(s,t) = K(z,t), for every s € (¢',6")
and all ¢t > 0.

In the Appendix we prove that

49 K= L2 S -v) - Fw- w0 +@ (Fuc) ~ (Fwe) |,

c2r | B2
where ¢ = aft/b, o = 1/(s® + r2)'/2,

(4.7) ¥(r) = / [1— F(bp)lodp, 0<7 <1,

T

and Q(v,¢) is given by formula (A.13). In Section 6 we present an explicit formula for
K(s,t), for the case of a uniform distribution of radii of spheres.

The simultaneous visibility probability p(si,...,Sn) can be expressed in terms of the
K (s,t) function, as in Yadin and Zacks (3, 4]. For n = 1, let p(s) denote the visibility

probability of P,. This is given by

(4.8) p(s) = exp{ —[u{C} — A(K(s,s — 0') + K(s5,0" — s))] },

for every §' < s < 0". For n> 2,

p(s15---,8n) = exp{ —[p{C} — A(K (51,51 — 0')

(4'9) + K(sma" —8a)) — A E(K(s;,g.' — 8i) + K(Si4+1,8i+1 — 5!))] b

=1
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where

. 1 —1(Si —1 [ Si+1
(4.10) §;=r tan (5 (tan (r) + tan (—r ))) .
Furthermore, the probability that the whole interval ¢ = [Py, Pgn] is visible is
(4.11) p1 = exp{ =A[p*{C} - K(s',s' — 0') — K(s",6" — s")]},

where p*{C} is the expected number of disks centered at C', minus the expected number

of disks centered between OP, and OP,+ having zero radius, i.e.,

w v+
. Ab s - z
u{C}=ﬂ{C}———-——'/dv )dz
B r
(4.12) “

w 1
= u{C} - (s" - ') /dv/ (u + vB) F(b|u|)du
u -1

5. A Special Case And Numerical Illustration
In the present section we consider, for example, the case of a uniform distribution of

sphere radii, i.e., F(z) = min (%,1) I(0,00(x), where I4(z) is the indicator function. In

the present case
(5.1) ¥(r) =

For 0 < 2 < z <1 define

(5.2) H(z,z) = j _ndn_ f U(r)dr.

1
n 1 12 l3
Hz2) = [ L (--— + L9 gr
J1-n2 6 2 3
x 1 n n

(5-3) = i{\/l_-_x_z— 2m + 2z sin~(z) + 2231 - 22/z
o))

1 lo
222 2 %8

A

AT S e SR




Thus, according to (A.13) and (5.2) the function Q(v,¢) is given in the present case by:

(0, v 2 Yo
2 H(v v) <v<
: (5.4) Qv,e) = { 2oH | m ), n<v<w
]
Lyo[H(i,l>+H(dsl,y—l)], 0<v<y.
Yo Yo Y1 Yo

(
\ Substituting v = fﬂﬁ’ vo = (1 +¢®)Y2, y, /yo = ¢/(1 + ¢?)1/?, we obtain for a = u,w
b
(5.5) /
211/2
( 0, ' ifaZﬁ(_li:)_.
; 2\1/2 ca ca : é 211/2
ca 4 2(1 + ¢%) H(ﬂ(1+c2)1/2’ﬂ(1+c2)1/2>’ iff<a< c(1+c)
Q(-F’C) = ’
g 2\1/2 ca ca
: (1+) [H(ﬂ(l+c2)1/2’ﬂ(1+c2)1/2)
L ¢ ¢ .
|+ (e ) | e<h

The function K(s,t) is given by substituting (5.5) in (A.15).

The proportional total visibility measure, W, on C is defined as the random integral
1 ‘ll
(5.6) W= / I(s)ds,
'l

where L = s" — s’ is the length of C and I(s) is a random indicator function, assuming
the value 1 if and only if P, is visible.

The moments of W on C are computed recursively according to the algorithm described
in Yadin and Zacks [3]. In Table 5.1 we provide the first ten moments of W, for the
parameters r* = 1, w* = .6, v* = 4, b= .3, s/ = -1, s = 1. We consider Poisson
random fields with intensity parameters A = 2,6,10, and inclination angles [radians] ¢ =

x x 3x

» 515, 3. The moments of the mixed-beta approximation (see [3]) are given also in Table

5.1. It should be noted that the computation of Table 5.1 on an IBM-4381 requires only

9
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25 sec’ of CPU. An evaluation of the functions K (s,t) by numerical integration raises the
computation time to over 3 minutes of CPU and results in loss of accuracy.

In Table 5.2 we present the parameters of the beta-mixture approximation to the CDF

of W, namely
(0, w<o0
w
(5.7) Fy(w) =1 po+ };”'L:ﬂ/ua“l(l ~u)fldy, 0<w>1
B(a, B)
0
\ 1’ 1 S w.

Using the approximation given by Fy;, (w) one can compute probabilities of W sets.

10
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Table 5.1 Moments of Visibility and Their

' Mixed-Beta Approximations*, For s’ = -1, s =1, ¢ =0,
N X, 3, and A=2,6,10,r=1,w=6,u=.4,5b=.3
. :
: X ] ¢ 1 2 3 4 5 6 7 8 9 10 | o
s 2 0 .958 |.932 | .914 |.902 |.804 |.889 | .886 |.886 | .887 | .887 | .841
\ 958 |1.932 |.914 |.902 |.893 |.886 |.881 | .876 |.873 | .870 | .841
" % 955 |.927 | .909 | .896 | .888 | .882 | .879 |.878 | .879 | .882 | .831
955 |.927 (.909 |.896 |.886 |.879 |.873 |.868 | .865 | .861 | .831
¢ % 944 | 910 | .887 |.871 |.860 | .853 | .848 | .846 | .846 | .848 |.791
944 | .910 | .887 | .871 | .859 | .850 | .843 | .837 | .832 | .828 |.791
3% | .904 |.847 |.809 |.783 |.765 |.752 |.743 |.737 |.733 |.732 |.678
904 | .847 | .809 |.783 |.764 |.749 |.783 |.729 |.721 |.715 | .678
6 0 .878 | .809 |.765 |.735 |.713 | .698 | .688 [ .680 | .676 | .674 | .594
.878 | .809 |.765 |.734 |.712 | .696 | .683 | .672 |.664 | .654 | .594
% 871 |.798 | .751 |.720 |.697 |.681 |.670 |.662 |.657 | .655 |.573
g 871 |.798 | .751 |.719 | .696 | .679 | .665 | .654 |.646 | .639 | .573
. % .842 |.754 | .699 | .661 | .635 | .616 | .602 |.593 | .586 | .582 | .494
842 |.754 | .699 | .661 | .634 | .614 | .598 | .586 |.576 | .567 | .494
%} 739 | .609 | .532 | .482 |.448 | .423 |.406 |.392 |.382 |.375 |.284
739 | .609 | .532 | .482 | .447 | .422 | .402 |.387 |.375 |.365 |.284
i 10 0 .806 |.703 | .640 |.599 |.570 | .549 |.534 |.523 |.515 | .510 | 4.20
.806 |.703 | .640 |.599 | .569 | .547 | .530 |.517 |.506 | .497 | .420
% 794 | .687 | .622 |.579 |.549 |.527 |{.511 |.500 |.492 | .486 | .396
794 | .687 | .622 |.578 |.548 | .525 | .508 | .494 | .483 | .474 | .396
) % .750 | .626 | .551 |.503 | .470 | .446 | .429 | .416 | .407 | .400 | .309
: .750 | .626 | .551 |.503 | .469 | .444 | .425 | .411 |.399 | .389 | .309
f %} .603 | .440 | .352 |.299 |.264 | .240 | .223 |.210 |.200 |.193 |.123
. .603 | .440 | .352 |.299 |.263 |.238 |.220 |.206 |.195 | .187 |.123
{
Y *The upper value in each cell is the moment of W. The lower value is that of the beta-

mixture distibution. go = p;.
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Table 5.2 The Parameters of The Mixed-Beta Distributions,

For s'=-1,s"=1,¢=0, £, T, 3 and X =2,6,10,

r=1l,w=6,u=.4,5=23

¢ Py Py a B 4
0 0 .8409 3.489 1.293 .12029
z 0 .8307 3.525 1.301 .12348
z 0 .7905 3.595 1.324 .13578
2 .0001 6576 3.474 1.354 17217
0 .0007 .5954 3.132 1.336 .19392
z .0010 5733 3.114 1.339 .19814
x .0021 .4940 2.999 1.350 .21371
2 .0067 .2844 2.474 1.387 25194

10 0 .0039 .4204 2.724 1.348 .23307
z .0045 .3956 2.683 1.352 .23705
z .0068 .3088 2.492 1.373 .25082
5= .0159 .1230 1.872 1.483 .27510
12
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Appendiz: Analytic Derivation of K(s,t).

We derive here formula (4.8) of K(s,t). Starting from (4.5), and expressing G(y | z, v)

in terms of F(-), we obtain

(A.1) K(s,t) = [% /w dv 7pdz TF((y’ + ( z ”)252) m) dy,
© v—p_ 0

in which a = (s2 + r2)-1/2,

Let ¢ = afit/b then, after several simple changes of variables, we can write

Fw 1 y+cx
24
K(s,t) = bﬂr /dy/d /F(b(zz+z’)"’)dz
(A.2) gu. -1 o
b 2t Cz 2 2
= 2'- [ﬁ(w -~ U )_ J(c)ﬂsu!w)J’
where

Fw y+e

(A.3) J(e,B,u,w) = / /ld:c 6/ (1 - F(b(z2 + z2)1/2)]dz

N

‘u

Notice that F(b(z? + 2?)'/2) = 1 for all (z,2) s.t. z2 + 22 > 1. Write

(A4.4) J(e,B,u,w) = Jy(e, B,u, w) - J2(¢, B, u,w),

where
Fw 1 1-z3

(A.S) Ji(e, Byu,w) = dy/d-t / 1 - F(b(12 + 22)1/2)]‘12
iu -1 0

and

f;w

(A.6) Ja(e, B, u,w) = / dy/d:: / (1 - F(b(z? + 2%)'/?)]dz,
FY T M(yter,/1-29)
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where M(a,b) = min(a,b).

Transforming (z, 2) to the polar coordinates (p, ) we obtain

Fu r 1 ‘
Ji(e,B,u,w) = [ dy [ d6 [ p[1 — F(bp)]dp |
un [a]=]

= 7r'—3-(w — u)¥(0),

where ¥(t) is defined in (4.6).

In order to evaluate the function J;(c, 8, u,w), define the function

(A.8) Q(v,¢) = 7dy/lda: ]o (1 — F(b(z? + 2%)'/?)]dz
v 1 ytez

Then,

(A.9) Ja(e, B u,w) = Q(%u,c) - Q(%w,c).

Consider the half circle Co = {(z,2): -1 <z<1,0<2<1, z2+22 <1} (see Figure
A.1). Let L be theline z = y+ ¢z, having a slope ¢, ¢ > 0, and intercept y. Let Lo bea
line parallel to £, which is tangential to Cy. Let yo be the intercept of Lo. Similarly, let
L, bealine parallel to £, passing through the point (-1,0). £, has an intercept y; = ¢.
Let P be the point at the intersection of Cy and Lq. The right triangle with vertices o,
P, (0,y0) is congruent to the triangle (—1,0), O, (0,y;). Hence yo = (1 + ¢2)!/2. It is
clear that if v > yo then Q(v,c) = 0. We distinguish two cases.

Case I' y; <v <yp.
The line segment @ intersects the line £ at P*, whose distance from 0 is vy=y/yo

(see Figure A.1). Let A and B be the points at which £ intersects the half circle Cp.

The triangle ABOA is equilateral and

(A.10) o =¢ POA = cos™!(v).

---------------------
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i: Hence, by changing to polar coordinates and making a proper rotation, we obtain
: vo  cosT (L)
3 (A.11) Q(v,¢) =2/dy / \I!(yo—fas—o)do.
v o
;' Case II. 0<v<y,.
Let 6, denote the angle between @? and @ (see Figure A.2). It is immediately
Ej‘ obtained that 6; = I — tan™!(c) = sin™! (ﬁ) = tan~! (%) . Thus, in Case II,

Yo 6o 6,
Yy Yy
A.12 &)= | d — Y  \a Y Vsl
3 (4.12) ow= [ y[/‘”(yo o)d +/\I’(yo o)d”]
) v 0 o]

4 Making the transformation n = cos(6), z = y/yon, and changing the order of integration,
Fo we obtain
Q]
@ (0, v > yo
- - 1 1
) ndn
u 2y [ ——— / z)dz, y1 <v<yo
‘- (4.13)  Q(v,¢) = { = V1
i
- 1 1 1
' ﬂ ’7 [/ \I](z dz+ / \I,(Z)d?"}, OSU<y1,
_!_ ,/ —
\ VO'I (,0., 11)

Notice that in the case of 0 < v < y;, one can write

1

(A.14) (v, —yo[/ \/_1? / V(z) dz+/—;7\/_d_i_n-2— /l \Il(z)dz].

A

yL
vo ¥0

¢ Finally, according to (A.2), (A.4), (A.7) and (A.9),
.
bp*t[c?, , ,  me c c
3 (A.15)  K(s, )_E—[_ﬂ_z(w —u )—F(w—u)\II(O)+Q Eu,c -Q Ew,c .
> 15
<
& 4
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